Skip to content

agent_k.mission.nodes

State machine nodes for mission phases.

agent_k.mission.nodes

State machine nodes for AGENT-K mission graph.

@notice: | State machine nodes for AGENT-K mission graph.

@dev: | See module for implementation details and extension points.

@graph: id: agent_k.mission.nodes provides: - agent_k.mission.nodes:DiscoveryNode - agent_k.mission.nodes:ResearchNode - agent_k.mission.nodes:PrototypeNode - agent_k.mission.nodes:EvolutionNode - agent_k.mission.nodes:SubmissionNode consumes: - agent_k.mission.state:MissionState - agent_k.agents.lobbyist:LobbyistAgent - agent_k.agents.scientist:ScientistAgent - agent_k.agents.evolver:EvolverAgent pattern: graph-state-machine

@similar: - id: agent_k.agents.lycurgus when: "Lycurgus orchestrates nodes; this module defines node behavior."

@agent-guidance: do: - "Use agent_k.mission.nodes as the canonical home for this capability." do_not: - "Create parallel modules without updating @similar or @graph."

@human-review: last-verified: 2026-01-26 owners: - agent-k-core

(c) Mike Casale 2025. Licensed under the MIT License.

DiscoveryNode dataclass

Bases: BaseNode[MissionState, GraphContext, MissionResult]

Discovery phase node.

Executes the LOBBYIST agent to discover competitions matching criteria.

Transitions:
    - Success → ResearchNode
    - Failure → End(failure)

@notice: | Discovery phase node.

@dev: | See module for implementation details and extension points.

@pattern:
    name: graph-node
    rationale: "Encapsulates discovery phase logic in the mission graph."
    violations: "Discovery logic outside nodes causes transition drift."

@collaborators:
    required:
        - agent_k.agents.lobbyist:LobbyistAgent
        - agent_k.ui.agui:EventEmitter
    optional:
        - httpx:AsyncClient
        - agent_k.core.protocols:PlatformAdapter
    injection: GraphContext
    lifecycle: "Instantiated per graph run."

@concurrency:
    model: asyncio
    safe: false
    reason: "Mutates mission state during execution."

@invariants:
    - "timeout > 0"
Source code in agent_k/mission/nodes.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
@dataclass
class DiscoveryNode(BaseNode[MissionState, GraphContext, MissionResult]):
    """Discovery phase node.

        Executes the LOBBYIST agent to discover competitions matching criteria.

        Transitions:
            - Success → ResearchNode
            - Failure → End(failure)

    @notice: |
        Discovery phase node.

    @dev: |
        See module for implementation details and extension points.

        @pattern:
            name: graph-node
            rationale: "Encapsulates discovery phase logic in the mission graph."
            violations: "Discovery logic outside nodes causes transition drift."

        @collaborators:
            required:
                - agent_k.agents.lobbyist:LobbyistAgent
                - agent_k.ui.agui:EventEmitter
            optional:
                - httpx:AsyncClient
                - agent_k.core.protocols:PlatformAdapter
            injection: GraphContext
            lifecycle: "Instantiated per graph run."

        @concurrency:
            model: asyncio
            safe: false
            reason: "Mutates mission state during execution."

        @invariants:
            - "timeout > 0"
    """

    timeout: int = DISCOVERY_TIMEOUT_SECONDS

    async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> ResearchNode | End[MissionResult]:
        """Execute discovery phase."""
        state = ctx.state
        emitter, http_client, platform_adapter = _require_context(ctx.deps)

        with logfire.span("graph.discovery", mission_id=state.mission_id):
            # Emit phase start
            await emitter.emit_phase_start(
                phase="discovery",
                objectives=[
                    "Find competitions matching criteria",
                    "Validate competition accessibility",
                    "Rank by fit score",
                ],
            )

            state.current_phase = "discovery"
            state.phase_started_at = datetime.now(UTC)

            try:
                if state.competition_id:
                    competition = await platform_adapter.get_competition(state.competition_id)
                    state.selected_competition = competition
                    state.discovered_competitions = [competition]
                    state.phases_completed.append("discovery")
                    await emitter.emit_phase_complete(
                        phase="discovery", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                    )
                    return ResearchNode()

                # Build prompt from criteria
                prompt = self._build_discovery_prompt(state.criteria)

                # Create dependencies
                deps = LobbyistDeps(http_client=http_client, platform_adapter=platform_adapter, event_emitter=emitter)

                # Run lobbyist agent
                lobbyist_agent = _resolve_agent(ctx.deps, "lobbyist")
                run_result = await lobbyist_agent.run(prompt, deps=deps)
                result = run_result.output

                # Update state
                state.discovered_competitions = result.competitions

                if not result.competitions:
                    await emitter.emit_phase_complete(
                        phase="discovery", success=False, duration_ms=self._elapsed_ms(state.phase_started_at)
                    )
                    return End(
                        MissionResult(
                            success=False,
                            mission_id=state.mission_id,
                            error_message="No competitions found matching criteria",
                            phases_completed=list(state.phases_completed),
                        )
                    )

                # Select best competition
                state.selected_competition = result.competitions[0]
                state.competition_id = state.selected_competition.id
                state.phases_completed.append("discovery")

                await emitter.emit_phase_complete(
                    phase="discovery", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                )

                # Transition to research
                return ResearchNode()

            except Exception as e:
                logfire.error("discovery_failed", error=str(e), traceback=traceback.format_exc())
                state.errors.append(
                    {
                        "phase": "discovery",
                        "error": str(e),
                        "error_type": type(e).__name__,
                        "timestamp": datetime.now(UTC).isoformat(),
                    }
                )
                await _emit_phase_failure(state=state, emitter=emitter, phase="discovery", error=e, context="discovery")
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        error_message=f"Discovery failed: {e}",
                        phases_completed=list(state.phases_completed),
                    )
                )

    def _build_discovery_prompt(self, criteria: Any) -> str:
        """Build discovery prompt from criteria."""
        parts = ["Find Kaggle competitions with the following criteria:"]

        if criteria.target_competition_types:
            types = ", ".join(t.value for t in criteria.target_competition_types)
            parts.append(f"- Types: {types}")

        if criteria.min_prize_pool:
            parts.append(f"- Minimum prize: ${criteria.min_prize_pool:,}")

        if criteria.min_days_remaining:
            parts.append(f"- At least {criteria.min_days_remaining} days remaining")

        if criteria.target_domains:
            domains = ", ".join(criteria.target_domains)
            parts.append(f"- Domains: {domains}")

        parts.append(f"- Target top {criteria.target_leaderboard_percentile * 100:.0f}% on leaderboard")

        return "\n".join(parts)

    def _elapsed_ms(self, start: datetime | None) -> int:
        """Calculate elapsed milliseconds."""
        return int((datetime.now(UTC) - start).total_seconds() * 1000) if start else 0
run async
run(ctx: GraphRunContext[MissionState, GraphContext]) -> ResearchNode | End[MissionResult]

Execute discovery phase.

Source code in agent_k/mission/nodes.py
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> ResearchNode | End[MissionResult]:
    """Execute discovery phase."""
    state = ctx.state
    emitter, http_client, platform_adapter = _require_context(ctx.deps)

    with logfire.span("graph.discovery", mission_id=state.mission_id):
        # Emit phase start
        await emitter.emit_phase_start(
            phase="discovery",
            objectives=[
                "Find competitions matching criteria",
                "Validate competition accessibility",
                "Rank by fit score",
            ],
        )

        state.current_phase = "discovery"
        state.phase_started_at = datetime.now(UTC)

        try:
            if state.competition_id:
                competition = await platform_adapter.get_competition(state.competition_id)
                state.selected_competition = competition
                state.discovered_competitions = [competition]
                state.phases_completed.append("discovery")
                await emitter.emit_phase_complete(
                    phase="discovery", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                )
                return ResearchNode()

            # Build prompt from criteria
            prompt = self._build_discovery_prompt(state.criteria)

            # Create dependencies
            deps = LobbyistDeps(http_client=http_client, platform_adapter=platform_adapter, event_emitter=emitter)

            # Run lobbyist agent
            lobbyist_agent = _resolve_agent(ctx.deps, "lobbyist")
            run_result = await lobbyist_agent.run(prompt, deps=deps)
            result = run_result.output

            # Update state
            state.discovered_competitions = result.competitions

            if not result.competitions:
                await emitter.emit_phase_complete(
                    phase="discovery", success=False, duration_ms=self._elapsed_ms(state.phase_started_at)
                )
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        error_message="No competitions found matching criteria",
                        phases_completed=list(state.phases_completed),
                    )
                )

            # Select best competition
            state.selected_competition = result.competitions[0]
            state.competition_id = state.selected_competition.id
            state.phases_completed.append("discovery")

            await emitter.emit_phase_complete(
                phase="discovery", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
            )

            # Transition to research
            return ResearchNode()

        except Exception as e:
            logfire.error("discovery_failed", error=str(e), traceback=traceback.format_exc())
            state.errors.append(
                {
                    "phase": "discovery",
                    "error": str(e),
                    "error_type": type(e).__name__,
                    "timestamp": datetime.now(UTC).isoformat(),
                }
            )
            await _emit_phase_failure(state=state, emitter=emitter, phase="discovery", error=e, context="discovery")
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message=f"Discovery failed: {e}",
                    phases_completed=list(state.phases_completed),
                )
            )

ResearchNode dataclass

Bases: BaseNode[MissionState, GraphContext, MissionResult]

Research phase node.

Executes the SCIENTIST agent to analyze the competition.

Transitions:
    - Success → PrototypeNode
    - Failure → End(failure)

@notice: | Research phase node.

@dev: | See module for implementation details and extension points.

@pattern:
    name: graph-node
    rationale: "Encapsulates research phase logic in the mission graph."
    violations: "Research logic outside nodes causes transition drift."

@collaborators:
    required:
        - agent_k.agents.scientist:ScientistAgent
        - agent_k.ui.agui:EventEmitter
    optional:
        - httpx:AsyncClient
        - agent_k.core.protocols:PlatformAdapter
    injection: GraphContext
    lifecycle: "Instantiated per graph run."

@concurrency:
    model: asyncio
    safe: false
    reason: "Mutates mission state during execution."

@invariants:
    - "timeout > 0"
Source code in agent_k/mission/nodes.py
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
@dataclass
class ResearchNode(BaseNode[MissionState, GraphContext, MissionResult]):
    """Research phase node.

        Executes the SCIENTIST agent to analyze the competition.

        Transitions:
            - Success → PrototypeNode
            - Failure → End(failure)

    @notice: |
        Research phase node.

    @dev: |
        See module for implementation details and extension points.

        @pattern:
            name: graph-node
            rationale: "Encapsulates research phase logic in the mission graph."
            violations: "Research logic outside nodes causes transition drift."

        @collaborators:
            required:
                - agent_k.agents.scientist:ScientistAgent
                - agent_k.ui.agui:EventEmitter
            optional:
                - httpx:AsyncClient
                - agent_k.core.protocols:PlatformAdapter
            injection: GraphContext
            lifecycle: "Instantiated per graph run."

        @concurrency:
            model: asyncio
            safe: false
            reason: "Mutates mission state during execution."

        @invariants:
            - "timeout > 0"
    """

    timeout: int = RESEARCH_TIMEOUT_SECONDS

    async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> PrototypeNode | End[MissionResult]:
        """Execute research phase."""
        state = ctx.state
        emitter, http_client, platform_adapter = _require_context(ctx.deps)
        competition = state.selected_competition
        if competition is None:
            _cleanup_session_data(state.mission_id)
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message="No competition selected for research",
                    phases_completed=list(state.phases_completed),
                )
            )

        with logfire.span("graph.research", competition_id=state.competition_id):
            await emitter.emit_phase_start(
                phase="research",
                objectives=[
                    "Analyze leaderboard and score distribution",
                    "Review relevant papers and techniques",
                    "Perform exploratory data analysis",
                    "Synthesize strategy recommendations",
                ],
            )

            state.current_phase = "research"
            state.phase_started_at = datetime.now(UTC)

            try:
                # Research implementation
                deps = ScientistDeps(
                    http_client=http_client, platform_adapter=platform_adapter, competition=competition
                )

                prompt = f"Research competition: {competition.title}"
                scientist_agent = _resolve_agent(ctx.deps, "scientist")
                run_result = await scientist_agent.run(prompt, deps=deps)
                result = run_result.output

                eda_results: dict[str, Any] | None = None
                try:
                    train_path, test_path, sample_path = await _prepare_session_data(
                        platform_adapter, state.mission_id, competition.id
                    )
                    profile = build_dataset_profile(train_path, test_path, sample_path)
                    hints = generate_preprocessing_hints(profile, competition.id)
                    eda_results = {
                        "dataset_profile": profile.to_dict(),
                        "preprocessing_hints": [hint.to_dict() for hint in hints],
                    }
                    try:
                        external_data = await get_external_data_policy(
                            http_client, competition.id, profile=profile, cache=deps.research_cache
                        )
                        eda_results["external_data_rules"] = external_data
                    except Exception as exc:
                        logfire.warning("external_data_rules_failed", error=str(exc))
                except Exception as exc:
                    logfire.warning("research_profile_failed", error=str(exc))

                try:
                    leaderboard = await platform_adapter.get_leaderboard(competition.id, limit=100)
                    analysis = _build_leaderboard_analysis(
                        leaderboard, state.criteria.target_leaderboard_percentile, competition.metric_direction
                    )
                except Exception as exc:
                    logfire.warning("leaderboard_analysis_failed", error=str(exc))
                    analysis = None

                state.research_findings = _build_research_findings(result, analysis, eda_results=eda_results)
                state.phases_completed.append("research")

                await emitter.emit_phase_complete(
                    phase="research", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                )

                return PrototypeNode()

            except Exception as e:
                logfire.error("research_failed", error=str(e), traceback=traceback.format_exc())
                state.errors.append(
                    {
                        "phase": "research",
                        "error": str(e),
                        "error_type": type(e).__name__,
                        "timestamp": datetime.now(UTC).isoformat(),
                    }
                )
                await _emit_phase_failure(state=state, emitter=emitter, phase="research", error=e, context="research")
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        error_message=f"Research failed: {e}",
                        phases_completed=list(state.phases_completed),
                    )
                )

    def _elapsed_ms(self, start: datetime | None) -> int:
        return int((datetime.now(UTC) - start).total_seconds() * 1000) if start else 0
run async
run(ctx: GraphRunContext[MissionState, GraphContext]) -> PrototypeNode | End[MissionResult]

Execute research phase.

Source code in agent_k/mission/nodes.py
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> PrototypeNode | End[MissionResult]:
    """Execute research phase."""
    state = ctx.state
    emitter, http_client, platform_adapter = _require_context(ctx.deps)
    competition = state.selected_competition
    if competition is None:
        _cleanup_session_data(state.mission_id)
        return End(
            MissionResult(
                success=False,
                mission_id=state.mission_id,
                error_message="No competition selected for research",
                phases_completed=list(state.phases_completed),
            )
        )

    with logfire.span("graph.research", competition_id=state.competition_id):
        await emitter.emit_phase_start(
            phase="research",
            objectives=[
                "Analyze leaderboard and score distribution",
                "Review relevant papers and techniques",
                "Perform exploratory data analysis",
                "Synthesize strategy recommendations",
            ],
        )

        state.current_phase = "research"
        state.phase_started_at = datetime.now(UTC)

        try:
            # Research implementation
            deps = ScientistDeps(
                http_client=http_client, platform_adapter=platform_adapter, competition=competition
            )

            prompt = f"Research competition: {competition.title}"
            scientist_agent = _resolve_agent(ctx.deps, "scientist")
            run_result = await scientist_agent.run(prompt, deps=deps)
            result = run_result.output

            eda_results: dict[str, Any] | None = None
            try:
                train_path, test_path, sample_path = await _prepare_session_data(
                    platform_adapter, state.mission_id, competition.id
                )
                profile = build_dataset_profile(train_path, test_path, sample_path)
                hints = generate_preprocessing_hints(profile, competition.id)
                eda_results = {
                    "dataset_profile": profile.to_dict(),
                    "preprocessing_hints": [hint.to_dict() for hint in hints],
                }
                try:
                    external_data = await get_external_data_policy(
                        http_client, competition.id, profile=profile, cache=deps.research_cache
                    )
                    eda_results["external_data_rules"] = external_data
                except Exception as exc:
                    logfire.warning("external_data_rules_failed", error=str(exc))
            except Exception as exc:
                logfire.warning("research_profile_failed", error=str(exc))

            try:
                leaderboard = await platform_adapter.get_leaderboard(competition.id, limit=100)
                analysis = _build_leaderboard_analysis(
                    leaderboard, state.criteria.target_leaderboard_percentile, competition.metric_direction
                )
            except Exception as exc:
                logfire.warning("leaderboard_analysis_failed", error=str(exc))
                analysis = None

            state.research_findings = _build_research_findings(result, analysis, eda_results=eda_results)
            state.phases_completed.append("research")

            await emitter.emit_phase_complete(
                phase="research", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
            )

            return PrototypeNode()

        except Exception as e:
            logfire.error("research_failed", error=str(e), traceback=traceback.format_exc())
            state.errors.append(
                {
                    "phase": "research",
                    "error": str(e),
                    "error_type": type(e).__name__,
                    "timestamp": datetime.now(UTC).isoformat(),
                }
            )
            await _emit_phase_failure(state=state, emitter=emitter, phase="research", error=e, context="research")
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message=f"Research failed: {e}",
                    phases_completed=list(state.phases_completed),
                )
            )

PrototypeNode dataclass

Bases: BaseNode[MissionState, GraphContext, MissionResult]

Prototype phase node.

Generates initial baseline solution.

Transitions:
    - Success → EvolutionNode
    - Failure → End(failure)

@notice: | Prototype phase node.

@dev: | See module for implementation details and extension points.

@pattern:
    name: graph-node
    rationale: "Encapsulates prototype phase logic in the mission graph."
    violations: "Prototype logic outside nodes causes transition drift."

@collaborators:
    required:
        - agent_k.core.solution:execute_solution
        - agent_k.ui.agui:EventEmitter
    optional:
        - agent_k.core.protocols:PlatformAdapter
    injection: GraphContext
    lifecycle: "Instantiated per graph run."

@concurrency:
    model: asyncio
    safe: false
    reason: "Mutates mission state during execution."

@invariants:
    - "timeout > 0"
Source code in agent_k/mission/nodes.py
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
@dataclass
class PrototypeNode(BaseNode[MissionState, GraphContext, MissionResult]):
    """Prototype phase node.

        Generates initial baseline solution.

        Transitions:
            - Success → EvolutionNode
            - Failure → End(failure)

    @notice: |
        Prototype phase node.

    @dev: |
        See module for implementation details and extension points.

        @pattern:
            name: graph-node
            rationale: "Encapsulates prototype phase logic in the mission graph."
            violations: "Prototype logic outside nodes causes transition drift."

        @collaborators:
            required:
                - agent_k.core.solution:execute_solution
                - agent_k.ui.agui:EventEmitter
            optional:
                - agent_k.core.protocols:PlatformAdapter
            injection: GraphContext
            lifecycle: "Instantiated per graph run."

        @concurrency:
            model: asyncio
            safe: false
            reason: "Mutates mission state during execution."

        @invariants:
            - "timeout > 0"
    """

    timeout: int = PROTOTYPE_TIMEOUT_SECONDS

    async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> EvolutionNode | End[MissionResult]:
        """Execute prototype phase."""
        state = ctx.state
        emitter, _http_client, platform_adapter = _require_context(ctx.deps)
        competition = state.selected_competition
        if competition is None:
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message="No competition selected for prototype phase",
                    phases_completed=list(state.phases_completed),
                )
            )

        with logfire.span("graph.prototype", competition_id=state.competition_id):
            await emitter.emit_phase_start(
                phase="prototype",
                objectives=[
                    "Generate baseline solution code",
                    "Validate solution structure",
                    "Establish baseline score",
                ],
            )

            state.current_phase = "prototype"
            state.phase_started_at = datetime.now(UTC)

            try:
                with tempfile.TemporaryDirectory() as work_dir:
                    work_path = Path(work_dir)
                    competition_id = state.competition_id or competition.id
                    state.competition_id = competition_id
                    train_path, test_path, sample_path = await _prepare_session_data(
                        platform_adapter, state.mission_id, competition_id
                    )
                    staged = stage_competition_data(
                        train_path, test_path, sample_path, work_path, competition_id=competition_id
                    )
                    schema = infer_competition_schema(staged["train"], staged["test"], staged["sample"])
                    profile = build_problem_profile(competition, schema)
                    technique_policy = build_technique_policy(profile, state.criteria)

                    prototype_code = self._generate_prototype(
                        competition,
                        state.research_findings,
                        target_columns=schema.target_columns,
                        train_target_columns=schema.train_target_columns,
                        id_column=schema.id_column,
                    )
                    prototype_code, notes = apply_solution_policy(prototype_code, technique_policy)
                    if notes:
                        logfire.warning("prototype_policy_injection_failed", notes=notes)

                    execution = await execute_solution(
                        prototype_code,
                        work_path,
                        timeout_seconds=self.timeout,
                        use_builtin_code_execution=True,
                        model_spec=evolver_settings.model,
                    )

                    submission_path = work_path / "submission.csv"
                    baseline_score = parse_baseline_score(execution.stdout)
                    if not submission_path.exists() or execution.returncode != 0 or execution.timed_out:
                        logfire.warning(
                            "prototype_execution_failed",
                            returncode=execution.returncode,
                            timed_out=execution.timed_out,
                            submission_exists=submission_path.exists(),
                            stderr=execution.stderr[:1000] if execution.stderr else "",
                            stdout=execution.stdout[:500] if execution.stdout else "",
                            runtime_ms=execution.runtime_ms,
                        )
                        fallback_code = _generate_fallback_prototype(
                            target_columns=schema.target_columns,
                            train_target_columns=schema.train_target_columns,
                            id_column=schema.id_column,
                            metric=competition.metric,
                        )
                        _write_fallback_submission(
                            train_path=staged["train"],
                            test_path=staged["test"],
                            sample_path=staged["sample"],
                            metric=competition.metric,
                            output_path=submission_path,
                        )
                        prototype_code = fallback_code

                    if baseline_score is None:
                        baseline_score = _compute_baseline_score(
                            train_path=staged["train"],
                            target_columns=schema.train_target_columns,
                            metric=competition.metric,
                        )

                    state.prototype_code = prototype_code
                    state.prototype_score = baseline_score
                    tracker = create_experiment_tracker()
                    metadata = extract_solution_metadata(prototype_code)
                    tracker.record_experiment(
                        ExperimentRecord(
                            competition_id=competition_id,
                            phase="prototype",
                            model_name=metadata.model_name,
                            model_family=metadata.model_family,
                            hyperparameters=metadata.hyperparameters,
                            feature_set=metadata.feature_set,
                            feature_engineering=metadata.feature_engineering,
                            target_transform=metadata.target_transform,
                            metrics={
                                "baseline_score": baseline_score,
                                "runtime_ms": execution.runtime_ms,
                                "timed_out": execution.timed_out,
                                "returncode": execution.returncode,
                            },
                            cv_score=baseline_score,
                            code_signature=hashlib.sha256(prototype_code.encode()).hexdigest()[:12],
                            dataset_fingerprint=competition_id,
                        )
                    )

                state.phases_completed.append("prototype")

                await emitter.emit_phase_complete(
                    phase="prototype", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                )

                return EvolutionNode()

            except Exception as e:
                logfire.error("prototype_failed", error=str(e), traceback=traceback.format_exc())
                state.errors.append(
                    {
                        "phase": "prototype",
                        "error": str(e),
                        "error_type": type(e).__name__,
                        "timestamp": datetime.now(UTC).isoformat(),
                    }
                )
                await _emit_phase_failure(state=state, emitter=emitter, phase="prototype", error=e, context="prototype")
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        error_message=f"Prototype failed: {e}",
                        phases_completed=list(state.phases_completed),
                    )
                )

    def _generate_prototype(
        self,
        competition: Any,
        research: Any,
        *,
        target_columns: list[str],
        train_target_columns: list[str],
        id_column: str,
    ) -> str:
        """Generate prototype solution code."""
        metric = getattr(competition, "metric", None)
        metric_key = metric if isinstance(metric, EvaluationMetric) else EvaluationMetric.ACCURACY
        metric_value = metric_key.value
        target_columns_repr = repr(target_columns)
        train_target_columns_repr = repr(train_target_columns)
        strategy_items: list[str] = []
        for attr in ("strategy_recommendations", "recommended_approaches"):
            value = getattr(research, attr, None)
            if isinstance(value, list):
                strategy_items.extend(str(item) for item in value if item)
            elif isinstance(value, str) and value:
                strategy_items.append(value)
        strategy_text = " ".join(strategy_items)
        strategy_lower = strategy_text.lower()

        is_classification = metric_key in {
            EvaluationMetric.ACCURACY,
            EvaluationMetric.AUC,
            EvaluationMetric.LOG_LOSS,
            EvaluationMetric.F1,
        }
        uses_proba = metric_key in {EvaluationMetric.AUC, EvaluationMetric.LOG_LOSS}

        if "lightgbm" in strategy_lower or "lgbm" in strategy_lower:
            model_class = "LGBMClassifier" if is_classification else "LGBMRegressor"
            fallback_class = "GradientBoostingClassifier" if is_classification else "GradientBoostingRegressor"
            model_import = "from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor"
            model_bootstrap = dedent(
                """
                HAS_LGB = False
                try:
                    from lightgbm import LGBMClassifier, LGBMRegressor
                    HAS_LGB = True
                except Exception:
                    HAS_LGB = False
                """
            ).strip()
            model_init = dedent(
                f"""
                if HAS_LGB:
                    base_model = {model_class}(random_state=42)
                else:
                    base_model = {fallback_class}(random_state=42)
                """
            ).strip()
        elif "linear" in strategy_lower:
            model_class = "LogisticRegression" if is_classification else "LinearRegression"
            model_import = "from sklearn.linear_model import LogisticRegression, LinearRegression"
            model_bootstrap = ""
            model_init = f"base_model = {model_class}(random_state=42)"
        elif "gradient" in strategy_lower or "boost" in strategy_lower:
            model_class = "GradientBoostingClassifier" if is_classification else "GradientBoostingRegressor"
            model_import = "from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor"
            model_bootstrap = ""
            model_init = f"base_model = {model_class}(random_state=42)"
        else:
            model_class = "RandomForestClassifier" if is_classification else "RandomForestRegressor"
            model_import = "from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor"
            model_bootstrap = ""
            model_init = f"base_model = {model_class}(random_state=42)"

        prototype_code = (
            dedent(
                f"""
        import os
        import numpy as np
        import pandas as pd
        from sklearn.compose import ColumnTransformer
        from sklearn.impute import SimpleImputer
        from sklearn.model_selection import train_test_split
        from sklearn.pipeline import Pipeline
        from sklearn.preprocessing import OneHotEncoder
        from sklearn.multioutput import MultiOutputClassifier, MultiOutputRegressor
        from sklearn.metrics import (
            accuracy_score,
            f1_score,
            log_loss,
            mean_absolute_error,
            mean_squared_error,
            mean_squared_log_error,
            roc_auc_score,
        )
        {model_import}
        {model_bootstrap}

        TARGET_COLUMNS = {target_columns_repr}
        TRAIN_TARGET_COLUMNS = {train_target_columns_repr}
        ID_COLUMN = "{id_column}"
        METRIC = "{metric_value}"
        METRIC_KEY = METRIC.lower().replace("_", "")
        VALIDATION_SPLIT = float(os.getenv("AGENT_K_VALIDATION_SPLIT", "0.2"))
        IS_CLASSIFICATION = {is_classification}
        USES_PROBA = {uses_proba}
        USES_LOG_TARGET = False

        train_df = pd.read_csv("train.csv")
        test_df = pd.read_csv("test.csv")

        y = train_df[TRAIN_TARGET_COLUMNS]
        if len(TRAIN_TARGET_COLUMNS) == 1:
            y = train_df[TRAIN_TARGET_COLUMNS[0]]
        X = train_df.drop(columns=TRAIN_TARGET_COLUMNS)

        categorical_cols = X.select_dtypes(include=["object", "category"]).columns
        numeric_cols = X.select_dtypes(exclude=["object", "category"]).columns

        categorical_transformer = Pipeline(steps=[
            ("imputer", SimpleImputer(strategy="most_frequent")),
            ("encoder", OneHotEncoder(handle_unknown="ignore")),
        ])
        numeric_transformer = Pipeline(steps=[
            ("imputer", SimpleImputer(strategy="median")),
        ])

        preprocessor = ColumnTransformer(
            transformers=[
                ("categorical", categorical_transformer, categorical_cols),
                ("numeric", numeric_transformer, numeric_cols),
            ],
        )

        {model_init}
        if len(TRAIN_TARGET_COLUMNS) > 1:
            base_model = (
                MultiOutputClassifier(base_model)
                if IS_CLASSIFICATION
                else MultiOutputRegressor(base_model)
            )

        X_train, X_val, y_train, y_val = train_test_split(
            X,
            y,
            test_size=VALIDATION_SPLIT,
            random_state=42,
            stratify=y if IS_CLASSIFICATION and len(TRAIN_TARGET_COLUMNS) == 1 else None,
        )

        clf = Pipeline(steps=[
            ("preprocessor", preprocessor),
            ("model", base_model),
        ])

        def _encode_labels(values, classes):
            mapping = {{label: idx for idx, label in enumerate(classes)}}
            return np.array([mapping.get(value, -1) for value in values])

        def _score_classification_single(y_true, preds, probas, classes):
            if METRIC_KEY == "accuracy":
                return accuracy_score(y_true, preds)
            if METRIC_KEY == "f1":
                average = "binary" if len(classes) == 2 else "weighted"
                return f1_score(y_true, preds, average=average, zero_division=0)
            if METRIC_KEY == "auc":
                if len(classes) < 2:
                    return 0.5
                if len(classes) == 2:
                    pos_label = classes[1]
                    y_binary = (y_true == pos_label).astype(int)
                    return roc_auc_score(y_binary, probas[:, 1])
                y_encoded = _encode_labels(y_true, classes)
                return roc_auc_score(
                    y_encoded,
                    probas,
                    multi_class="ovo",
                    average="macro",
                )
            if METRIC_KEY == "logloss":
                if len(classes) < 2:
                    return 0.0
                return log_loss(y_true, probas, labels=classes)
            return accuracy_score(y_true, preds)

        def _score_classification(y_true, preds, probas, model_step):
            scores = []
            if len(TRAIN_TARGET_COLUMNS) == 1:
                classes = model_step.classes_
                scores.append(_score_classification_single(y_true, preds, probas, classes))
            else:
                for idx, column in enumerate(TRAIN_TARGET_COLUMNS):
                    estimator = model_step.estimators_[idx]
                    classes = estimator.classes_
                    col_preds = preds[:, idx]
                    col_probas = probas[idx] if probas is not None else None
                    scores.append(
                        _score_classification_single(
                            y_true[column],
                            col_preds,
                            col_probas,
                            classes,
                        )
                    )
            return float(np.mean(scores)) if scores else 0.0

        def _score_regression_single(y_true, preds):
            if METRIC_KEY == "rmse":
                return mean_squared_error(y_true, preds) ** 0.5
            if METRIC_KEY == "mae":
                return mean_absolute_error(y_true, preds)
            if METRIC_KEY == "rmsle":
                if USES_LOG_TARGET:
                    return mean_squared_error(y_true, preds) ** 0.5
                return mean_squared_log_error(y_true, preds) ** 0.5
            return mean_squared_error(y_true, preds) ** 0.5

        def _score_regression(y_true, preds):
            if len(TRAIN_TARGET_COLUMNS) == 1:
                return _score_regression_single(y_true, preds)
            scores = [
                _score_regression_single(y_true[column], preds[:, idx])
                for idx, column in enumerate(TRAIN_TARGET_COLUMNS)
            ]
            return float(np.mean(scores)) if scores else 0.0

        clf.fit(X_train, y_train)
        model_step = clf.named_steps["model"]
        if IS_CLASSIFICATION:
            if USES_PROBA:
                val_probas = clf.predict_proba(X_val)
                val_preds = clf.predict(X_val)
                score = _score_classification(y_val, val_preds, val_probas, model_step)
            else:
                val_preds = clf.predict(X_val)
                score = _score_classification(y_val, val_preds, None, model_step)
        else:
            val_preds = clf.predict(X_val)
            score = _score_regression(y_val, val_preds)
        print(f"Baseline {metric_value} score: {{score}}")

        clf.fit(X, y)
        submission = pd.read_csv("sample_submission.csv")
        if IS_CLASSIFICATION and USES_PROBA:
            if len(TRAIN_TARGET_COLUMNS) == 1 and len(TARGET_COLUMNS) > 1:
                test_probas = clf.predict_proba(test_df)
                class_labels = [str(label) for label in model_step.classes_]
                proba_df = pd.DataFrame(test_probas, columns=class_labels)

                def _normalize_label(label):
                    return str(label).lower().replace("class_", "").replace("class ", "")

                normalized = {{_normalize_label(label): label for label in class_labels}}
                for column in TARGET_COLUMNS:
                    key = _normalize_label(column)
                    label = normalized.get(key)
                    if label and label in proba_df.columns:
                        submission[column] = proba_df[label]
                    elif test_probas.shape[1] == len(TARGET_COLUMNS):
                        submission[column] = test_probas[:, TARGET_COLUMNS.index(column)]
                    else:
                        submission[column] = 0.0
            elif len(TRAIN_TARGET_COLUMNS) == 1:
                test_probas = clf.predict_proba(test_df)
                submission[TARGET_COLUMNS[0]] = test_probas[:, 1]
            else:
                test_probas = clf.predict_proba(test_df)
                for idx, column in enumerate(TARGET_COLUMNS):
                    column_proba = test_probas[idx]
                    if column_proba.ndim == 2 and column_proba.shape[1] > 1:
                        submission[column] = column_proba[:, 1]
                    else:
                        submission[column] = column_proba.ravel()
        else:
            test_preds = clf.predict(test_df)
            if USES_LOG_TARGET:
                test_preds = np.expm1(test_preds)
            if len(TARGET_COLUMNS) == 1:
                submission[TARGET_COLUMNS[0]] = test_preds
            else:
                for idx, column in enumerate(TARGET_COLUMNS):
                    submission[column] = test_preds[:, idx]
        submission.to_csv("submission.csv", index=False)
        """
            ).strip()
            + "\n"
        )
        return prototype_code

    def _elapsed_ms(self, start: datetime | None) -> int:
        return int((datetime.now(UTC) - start).total_seconds() * 1000) if start else 0
run async
run(ctx: GraphRunContext[MissionState, GraphContext]) -> EvolutionNode | End[MissionResult]

Execute prototype phase.

Source code in agent_k/mission/nodes.py
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> EvolutionNode | End[MissionResult]:
    """Execute prototype phase."""
    state = ctx.state
    emitter, _http_client, platform_adapter = _require_context(ctx.deps)
    competition = state.selected_competition
    if competition is None:
        return End(
            MissionResult(
                success=False,
                mission_id=state.mission_id,
                error_message="No competition selected for prototype phase",
                phases_completed=list(state.phases_completed),
            )
        )

    with logfire.span("graph.prototype", competition_id=state.competition_id):
        await emitter.emit_phase_start(
            phase="prototype",
            objectives=[
                "Generate baseline solution code",
                "Validate solution structure",
                "Establish baseline score",
            ],
        )

        state.current_phase = "prototype"
        state.phase_started_at = datetime.now(UTC)

        try:
            with tempfile.TemporaryDirectory() as work_dir:
                work_path = Path(work_dir)
                competition_id = state.competition_id or competition.id
                state.competition_id = competition_id
                train_path, test_path, sample_path = await _prepare_session_data(
                    platform_adapter, state.mission_id, competition_id
                )
                staged = stage_competition_data(
                    train_path, test_path, sample_path, work_path, competition_id=competition_id
                )
                schema = infer_competition_schema(staged["train"], staged["test"], staged["sample"])
                profile = build_problem_profile(competition, schema)
                technique_policy = build_technique_policy(profile, state.criteria)

                prototype_code = self._generate_prototype(
                    competition,
                    state.research_findings,
                    target_columns=schema.target_columns,
                    train_target_columns=schema.train_target_columns,
                    id_column=schema.id_column,
                )
                prototype_code, notes = apply_solution_policy(prototype_code, technique_policy)
                if notes:
                    logfire.warning("prototype_policy_injection_failed", notes=notes)

                execution = await execute_solution(
                    prototype_code,
                    work_path,
                    timeout_seconds=self.timeout,
                    use_builtin_code_execution=True,
                    model_spec=evolver_settings.model,
                )

                submission_path = work_path / "submission.csv"
                baseline_score = parse_baseline_score(execution.stdout)
                if not submission_path.exists() or execution.returncode != 0 or execution.timed_out:
                    logfire.warning(
                        "prototype_execution_failed",
                        returncode=execution.returncode,
                        timed_out=execution.timed_out,
                        submission_exists=submission_path.exists(),
                        stderr=execution.stderr[:1000] if execution.stderr else "",
                        stdout=execution.stdout[:500] if execution.stdout else "",
                        runtime_ms=execution.runtime_ms,
                    )
                    fallback_code = _generate_fallback_prototype(
                        target_columns=schema.target_columns,
                        train_target_columns=schema.train_target_columns,
                        id_column=schema.id_column,
                        metric=competition.metric,
                    )
                    _write_fallback_submission(
                        train_path=staged["train"],
                        test_path=staged["test"],
                        sample_path=staged["sample"],
                        metric=competition.metric,
                        output_path=submission_path,
                    )
                    prototype_code = fallback_code

                if baseline_score is None:
                    baseline_score = _compute_baseline_score(
                        train_path=staged["train"],
                        target_columns=schema.train_target_columns,
                        metric=competition.metric,
                    )

                state.prototype_code = prototype_code
                state.prototype_score = baseline_score
                tracker = create_experiment_tracker()
                metadata = extract_solution_metadata(prototype_code)
                tracker.record_experiment(
                    ExperimentRecord(
                        competition_id=competition_id,
                        phase="prototype",
                        model_name=metadata.model_name,
                        model_family=metadata.model_family,
                        hyperparameters=metadata.hyperparameters,
                        feature_set=metadata.feature_set,
                        feature_engineering=metadata.feature_engineering,
                        target_transform=metadata.target_transform,
                        metrics={
                            "baseline_score": baseline_score,
                            "runtime_ms": execution.runtime_ms,
                            "timed_out": execution.timed_out,
                            "returncode": execution.returncode,
                        },
                        cv_score=baseline_score,
                        code_signature=hashlib.sha256(prototype_code.encode()).hexdigest()[:12],
                        dataset_fingerprint=competition_id,
                    )
                )

            state.phases_completed.append("prototype")

            await emitter.emit_phase_complete(
                phase="prototype", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
            )

            return EvolutionNode()

        except Exception as e:
            logfire.error("prototype_failed", error=str(e), traceback=traceback.format_exc())
            state.errors.append(
                {
                    "phase": "prototype",
                    "error": str(e),
                    "error_type": type(e).__name__,
                    "timestamp": datetime.now(UTC).isoformat(),
                }
            )
            await _emit_phase_failure(state=state, emitter=emitter, phase="prototype", error=e, context="prototype")
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message=f"Prototype failed: {e}",
                    phases_completed=list(state.phases_completed),
                )
            )

EvolutionNode dataclass

Bases: BaseNode[MissionState, GraphContext, MissionResult]

Evolution phase node.

Executes the EVOLVER agent to optimize the solution.

Transitions:
    - Success → SubmissionNode
    - Failure → End(failure with best solution)

@notice: | Evolution phase node.

@dev: | See module for implementation details and extension points.

@pattern:
    name: graph-node
    rationale: "Encapsulates evolution phase logic in the mission graph."
    violations: "Evolution logic outside nodes causes transition drift."

@collaborators:
    required:
        - agent_k.agents.evolver:EvolverAgent
        - agent_k.ui.agui:EventEmitter
    optional:
        - agent_k.core.protocols:PlatformAdapter
    injection: GraphContext
    lifecycle: "Instantiated per graph run."

@concurrency:
    model: asyncio
    safe: false
    reason: "Mutates mission state during execution."

@invariants:
    - "timeout > 0"
Source code in agent_k/mission/nodes.py
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
@dataclass
class EvolutionNode(BaseNode[MissionState, GraphContext, MissionResult]):
    """Evolution phase node.

        Executes the EVOLVER agent to optimize the solution.

        Transitions:
            - Success → SubmissionNode
            - Failure → End(failure with best solution)

    @notice: |
        Evolution phase node.

    @dev: |
        See module for implementation details and extension points.

        @pattern:
            name: graph-node
            rationale: "Encapsulates evolution phase logic in the mission graph."
            violations: "Evolution logic outside nodes causes transition drift."

        @collaborators:
            required:
                - agent_k.agents.evolver:EvolverAgent
                - agent_k.ui.agui:EventEmitter
            optional:
                - agent_k.core.protocols:PlatformAdapter
            injection: GraphContext
            lifecycle: "Instantiated per graph run."

        @concurrency:
            model: asyncio
            safe: false
            reason: "Mutates mission state during execution."

        @invariants:
            - "timeout > 0"
    """

    timeout: int = EVOLUTION_TIMEOUT_SECONDS

    async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> SubmissionNode | End[MissionResult]:
        """Execute evolution phase."""
        state = ctx.state
        emitter, _http_client, platform_adapter = _require_context(ctx.deps)
        competition = state.selected_competition
        if competition is None:
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message="No competition selected for evolution phase",
                    phases_completed=list(state.phases_completed),
                )
            )

        with logfire.span("graph.evolution", competition_id=state.competition_id):
            await emitter.emit_phase_start(
                phase="evolution",
                objectives=[
                    "Initialize population from prototype",
                    "Evolve solutions over generations",
                    "Track fitness improvements",
                    "Achieve target score or convergence",
                ],
            )

            state.current_phase = "evolution"
            state.phase_started_at = datetime.now(UTC)

            try:
                state.evolution_state = EvolutionState(
                    max_generations=state.criteria.max_evolution_rounds,
                    min_improvements_required=state.criteria.min_improvements_required,
                )

                if _quick_test_enabled(state.criteria):
                    return await self._run_quick_evolution(state, emitter)

                outcome = await self._run_full_evolution(
                    deps=ctx.deps,
                    state=state,
                    emitter=emitter,
                    platform_adapter=platform_adapter,
                    competition=competition,
                )
                if isinstance(outcome, End):
                    return outcome

                (
                    best_solution,
                    best_fitness,
                    history,
                    improvement_count,
                    convergence_detected,
                    convergence_reason,
                    population_size,
                    failure_counts,
                ) = outcome

                resolved_solution = best_solution or state.prototype_code or ""
                resolved_fitness = best_fitness if best_fitness is not None else 0.0
                failure_summary = dict(failure_counts)
                if failure_summary:
                    logfire.info(
                        "evolution_failure_summary",
                        summary=failure_summary,
                        total_failures=sum(failure_summary.values()),
                    )

                state.evolution_state = state.evolution_state.model_copy(
                    update={
                        "best_solution": {"code": resolved_solution, "fitness": resolved_fitness},
                        "convergence_detected": convergence_detected,
                        "convergence_reason": convergence_reason,
                        "current_generation": len(history),
                        "max_generations": state.criteria.max_evolution_rounds,
                        "population_size": population_size,
                        "improvement_count": improvement_count,
                        "min_improvements_required": state.criteria.min_improvements_required,
                        "generation_history": _convert_generation_history(history, population_size),
                        "failure_summary": failure_summary,
                    }
                )

                state.phases_completed.append("evolution")

                await emitter.emit_phase_complete(
                    phase="evolution", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                )

                return SubmissionNode()

            except Exception as e:
                logfire.error("evolution_failed", error=str(e), traceback=traceback.format_exc())
                state.errors.append(
                    {
                        "phase": "evolution",
                        "error": str(e),
                        "error_type": type(e).__name__,
                        "timestamp": datetime.now(UTC).isoformat(),
                    }
                )
                await _emit_phase_failure(state=state, emitter=emitter, phase="evolution", error=e, context="evolution")
                # Even on failure, try to submit best solution if available
                if state.evolution_state and state.evolution_state.best_solution:
                    return SubmissionNode()
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        error_message=f"Evolution failed: {e}",
                        phases_completed=list(state.phases_completed),
                    )
                )

    async def _run_full_evolution(
        self,
        *,
        deps: GraphContext,
        state: MissionState,
        emitter: EventEmitter,
        platform_adapter: PlatformAdapter,
        competition: Any,
    ) -> (
        End[MissionResult] | tuple[str, float | None, list[dict[str, Any]], int, bool, str | None, int, dict[str, int]]
    ):
        criteria = state.criteria
        max_rounds = criteria.max_evolution_rounds

        with tempfile.TemporaryDirectory() as work_dir:
            work_path = Path(work_dir)
            competition_id = state.competition_id or competition.id
            state.competition_id = competition_id
            train_path, test_path, sample_path = await _prepare_session_data(
                platform_adapter, state.mission_id, competition_id
            )
            staged = stage_competition_data(
                train_path, test_path, sample_path, work_path, competition_id=competition_id
            )
            schema = infer_competition_schema(staged["train"], staged["test"], staged["sample"])

            population_size = evolver_settings.population_size
            solution_timeout = evolver_settings.solution_timeout
            profile = build_problem_profile(competition, schema)
            technique_policy = build_technique_policy(profile, criteria)
            population_size = max(population_size, technique_policy.min_population_size)
            if max_rounds <= 5:
                population_size = min(population_size, 4)
                solution_timeout = min(solution_timeout, 90)
            elif max_rounds <= 10:
                population_size = min(population_size, 10)
                solution_timeout = min(solution_timeout, 180)

            min_generations = min(max(evolver_settings.min_generations, technique_policy.min_generations), max_rounds)
            min_improvements_required = criteria.min_improvements_required
            fitness_policy = build_fitness_policy(profile, criteria, max_runtime_ms=int(solution_timeout * 1000))
            target_score = self._calculate_target_score(state)
            evolution_models = [model.strip() for model in criteria.evolution_models if model.strip()]
            use_openevolve = criteria.use_openevolve or evolver_settings.use_openevolve
            research = state.research_findings
            strategy_recommendations = research.strategy_recommendations if research else []
            filtered_recommendations = _filter_disallowed_recommendations(strategy_recommendations)
            strategy_text = "; ".join(filtered_recommendations) if filtered_recommendations else "N/A"
            lightgbm_guidance = (
                "LightGBM is available. Prefer it for tree-based models instead of XGBoost. "
                "For evolutionary searches, always try evolving custom LightGBM loss settings "
                "(quantile alpha, huber delta, asymmetric weighting, MAE/RMSE blends) via the "
                "LightGBM custom objective interface."
                if _LIGHTGBM_AVAILABLE
                else "LightGBM is unavailable in this runtime; do not import or use it."
            )
            avoid_library_guidance = (
                "Avoid XGBoost and CatBoost unless explicitly enabled for the mission; "
                "prefer LightGBM for tree-based boosting."
            )
            base_prompt = f"""
                    Evolve solution for {competition.title}.
                    Target: Top {criteria.target_leaderboard_percentile * 100:.0f}% on leaderboard.
                    Research suggests: {strategy_text}
                    Minimum generations before convergence (global count): {min_generations}.
                    Minimum improvements required before submission: {min_improvements_required}.
                    Maintain diversity using model families and solution complexity bins.
                    Use sample_elites to pull top and diverse candidates.
                    Use cascade evaluation in evaluate_fitness to skip full runs when quick checks fail.
                    Consider KNeighborsRegressor variants with tuned n_neighbors, weights, metric, p, leaf_size,
                    algorithm, and scaling choices (StandardScaler/MinMax/Robust) for distance sensitivity.
                    For categorical features, consider sklearn preprocessing (SimpleImputer + OneHotEncoder(handle_unknown="ignore"))
                    or pandas.get_dummies on a DataFrame; avoid mixing get_dummies output inside a ColumnTransformer.
                    {lightgbm_guidance}
                    {avoid_library_guidance}
                    If research mentions disallowed libraries, ignore those suggestions and stay within the allowed stack.
                    """
            if technique_policy.enable_target_transform:
                base_prompt += (
                    "\nFor skewed regression targets, consider log1p transforms with inverse expm1 on predictions."
                )
            if technique_policy.enable_outlier_clipping:
                base_prompt += "\nConsider clipping extreme numeric outliers via quantiles."

            baseline_fitness = _fitness_from_score(state.prototype_score, competition.metric_direction)
            best_solution = state.prototype_code or ""
            best_fitness: float | None = baseline_fitness
            improvement_count = 0
            combined_history: list[dict[str, Any]] = []
            elite_archive: dict[tuple[int, str], Any] = {}
            convergence_detected = False
            convergence_reason: str | None = None

            dataset_profile: DatasetProfile | None = None
            preprocessing_hints: list[PreprocessingHint] = []
            eda_results = research.eda_results if research else None
            if isinstance(eda_results, dict):
                profile_payload = eda_results.get("dataset_profile")
                if isinstance(profile_payload, dict):
                    dataset_profile = DatasetProfile.from_dict(profile_payload)
                hint_payloads = eda_results.get("preprocessing_hints") or []
                for hint_payload in hint_payloads:
                    if isinstance(hint_payload, dict):
                        preprocessing_hints.append(PreprocessingHint.from_dict(hint_payload))
            tracker = create_experiment_tracker()
            hint_tracker = HintEffectivenessTracker(experiment_tracker=tracker) if preprocessing_hints else None
            failure_counts: dict[str, int] = {}

            def _append_error(error_message: str, error_type: str | None) -> None:
                state.errors.append(
                    {
                        "phase": "evolution",
                        "error": error_message,
                        "error_type": error_type,
                        "timestamp": datetime.now(UTC).isoformat(),
                    }
                )

            def _warn(event: str, *, error: str, model: str | None = None) -> None:
                if model:
                    logfire.warning(event, error=error, model=model)
                else:
                    logfire.warning(event, error=error)

            def record_rate_limit(error_message: str, *, model_spec: str | None, error_type: str | None) -> None:
                _append_error(error_message, error_type or "rate_limit")
                logfire.warning(
                    "evolution_rate_limited", model=model_spec or evolver_settings.model, error=error_message
                )

            def _set_partial_solution(code: str) -> None:
                if state.evolution_state is None:
                    return
                state.evolution_state = state.evolution_state.model_copy(
                    update={"best_solution": {"code": code, "fitness": 0.0}}
                )

            def _apply_rate_limit(
                error_message: str,
                *,
                model_spec: str | None,
                error_type: str | None,
                deps: EvolverDeps | None,
                mark_convergence: bool,
            ) -> None:
                nonlocal combined_history, improvement_count, convergence_detected, convergence_reason
                record_rate_limit(error_message, model_spec=model_spec, error_type=error_type)
                if deps is not None:
                    combined_history = deps.generation_history
                    improvement_count = deps.improvement_count
                if mark_convergence:
                    convergence_detected = True
                    convergence_reason = "rate_limit"

            async def _emit_failure(result: EvolutionFailure) -> End[MissionResult]:
                _append_error(result.error_message, result.error_type)
                await emitter.emit_phase_error(
                    phase="evolution", error=result.error_message, recoverable=bool(result.recoverable)
                )
                await emitter.emit_error(
                    error_id=f"evolution_{state.mission_id}",
                    category="recoverable" if result.recoverable else "fatal",
                    error_type=result.error_type,
                    message=result.error_message,
                    context="evolution",
                    recovery_strategy="retry" if result.recoverable else "abort",
                )
                await emitter.emit_phase_complete(
                    phase="evolution", success=False, duration_ms=self._elapsed_ms(state.phase_started_at)
                )
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        competition_id=state.competition_id,
                        error_message=f"Evolution failed: {result.error_message}",
                        phases_completed=list(state.phases_completed),
                    )
                )

            async def _apply_fallback(
                result: EvolutionFailure,
                *,
                deps: EvolverDeps,
                model: str | None = None,
                reason: str = "failure_fallback",
                event: str = "evolution_failure_fallback",
                error_id: str = "evolution_fallback",
                update_partial: bool = True,
                require_solution: bool = True,
                error_type: str | None = None,
            ) -> bool:
                nonlocal best_solution, best_fitness, combined_history, improvement_count, convergence_detected
                nonlocal convergence_reason
                fallback_solution = result.partial_solution or best_solution or state.prototype_code or ""
                if require_solution and not fallback_solution:
                    return False
                if update_partial and result.partial_solution:
                    _set_partial_solution(result.partial_solution)
                best_solution = fallback_solution
                if best_fitness is None:
                    best_fitness = baseline_fitness or 0.0
                combined_history = deps.generation_history
                improvement_count = deps.improvement_count
                convergence_detected = True
                convergence_reason = reason
                _warn(event, error=result.error_message, model=model)
                _append_error(result.error_message, error_type or result.error_type)
                await emitter.emit_error(
                    error_id=f"{error_id}_{state.mission_id}",
                    category="recoverable",
                    error_type=error_type or result.error_type,
                    message=result.error_message,
                    context="evolution",
                    recovery_strategy="fallback",
                )
                return True

            def _apply_success(result: Any, deps: EvolverDeps) -> None:
                nonlocal combined_history, improvement_count, best_solution, best_fitness, convergence_detected
                nonlocal convergence_reason
                combined_history = deps.generation_history
                improvement_count = deps.improvement_count
                best_solution = result.best_solution
                best_fitness = result.best_fitness
                convergence_detected = result.convergence_achieved
                convergence_reason = result.convergence_reason

            deps_kwargs = {
                "competition": competition,
                "event_emitter": emitter,
                "platform_adapter": platform_adapter,
                "data_dir": work_path,
                "train_path": staged["train"],
                "test_path": staged["test"],
                "sample_path": staged["sample"],
                "target_columns": schema.target_columns,
                "train_target_columns": schema.train_target_columns,
                "id_column": schema.id_column,
                "problem_profile": profile,
                "technique_policy": technique_policy,
                "fitness_policy": fitness_policy,
                "population_size": population_size,
                "solution_timeout": solution_timeout,
                "target_score": target_score,
                "min_generations": min_generations,
                "min_improvements_required": min_improvements_required,
                "experiment_tracker": tracker,
                "dataset_profile": dataset_profile,
                "preprocessing_hints": preprocessing_hints,
                "hint_tracker": hint_tracker,
                "failure_counts": failure_counts,
            }

            if use_openevolve:
                deps_instance = EvolverDeps(
                    **deps_kwargs,
                    initial_solution=best_solution,
                    best_solution=best_solution or None,
                    best_fitness=best_fitness,
                    max_generations=max_rounds,
                    improvement_count=improvement_count,
                    elite_archive=elite_archive,
                )
                evolver_instance = EvolverAgent(settings=evolver_settings, register=False)
                try:
                    result = await evolver_instance.run_openevolve(
                        deps_instance, base_prompt=base_prompt, model_specs=evolution_models or [evolver_settings.model]
                    )
                except Exception as exc:
                    if _is_rate_limit_error(exc):
                        _apply_rate_limit(
                            str(exc),
                            model_spec=None,
                            error_type=getattr(exc, "code", None),
                            deps=deps_instance,
                            mark_convergence=True,
                        )
                    else:
                        raise
                else:
                    if isinstance(result, EvolutionFailure):
                        if not await _apply_fallback(
                            result, deps=deps_instance, model="openevolve", update_partial=False
                        ):
                            return await _emit_failure(result)
                    else:
                        _apply_success(result, deps_instance)

            elif not evolution_models:
                deps_instance = EvolverDeps(
                    **deps_kwargs,
                    initial_solution=best_solution,
                    best_solution=best_solution or None,
                    best_fitness=best_fitness,
                    max_generations=max_rounds,
                    improvement_count=improvement_count,
                    elite_archive=elite_archive,
                )
                evolver_agent = _resolve_agent(deps, "evolver")
                try:
                    run_result = await evolver_agent.run(base_prompt, deps=deps_instance)
                except Exception as exc:
                    if _is_rate_limit_error(exc):
                        _apply_rate_limit(
                            str(exc),
                            model_spec=None,
                            error_type=getattr(exc, "code", None),
                            deps=deps_instance,
                            mark_convergence=True,
                        )
                    else:
                        raise
                else:
                    result = run_result.output
                    if isinstance(result, EvolutionFailure):
                        if _is_rate_limit_error(result.error_message) or _is_rate_limit_error(result.error_type):
                            if result.partial_solution:
                                best_solution = result.partial_solution
                            _apply_rate_limit(
                                result.error_message,
                                model_spec=None,
                                error_type=result.error_type,
                                deps=deps_instance,
                                mark_convergence=True,
                            )
                        elif _is_constraints_failure(result.error_message):
                            await _apply_fallback(
                                result,
                                deps=deps_instance,
                                reason="constraints",
                                event="evolution_constraints_fallback",
                                error_id="evolution_constraints",
                                update_partial=False,
                                require_solution=False,
                                error_type=result.error_type or "constraints",
                            )
                        else:
                            if not await _apply_fallback(result, deps=deps_instance, model="primary"):
                                if result.partial_solution:
                                    _set_partial_solution(result.partial_solution)
                                return await _emit_failure(result)
                    else:
                        _apply_success(result, deps_instance)
            else:
                agents_by_model: dict[str, Any] = {}
                remaining_generations = max_rounds
                available_models = [model for model in evolution_models if model]
                segment_index = 0
                model_index = 0

                while remaining_generations > 0 and available_models:
                    segment_index += 1
                    rotation_stride = max(5, min(25, math.ceil(remaining_generations / max(len(available_models), 1))))
                    model_spec = available_models[model_index % len(available_models)]
                    segment_generations = min(rotation_stride, remaining_generations)
                    generation_offset = len(combined_history)

                    agent = agents_by_model.get(model_spec)
                    if agent is None:
                        segment_settings = evolver_settings.model_copy(update={"model": model_spec})
                        agent_instance = EvolverAgent(settings=segment_settings, register=False)
                        agent = agent_instance.agent
                        agents_by_model[model_spec] = agent

                    segment_prompt = (
                        f"""{base_prompt}
Model rotation segment {segment_index} using {model_spec}."""
                        f"\nRun {segment_generations} generations for this segment starting at {generation_offset + 1},"
                        " unless convergence criteria are met earlier."
                    )

                    segment_deps = EvolverDeps(
                        **deps_kwargs,
                        initial_solution=best_solution or state.prototype_code or "",
                        best_solution=best_solution or None,
                        best_fitness=best_fitness,
                        max_generations=segment_generations,
                        improvement_count=improvement_count,
                        generation_history=combined_history,
                        generation_offset=generation_offset,
                        elite_archive=elite_archive,
                    )
                    try:
                        run_result = await agent.run(segment_prompt, deps=segment_deps)
                    except Exception as exc:
                        if _is_rate_limit_error(exc):
                            _apply_rate_limit(
                                str(exc),
                                model_spec=model_spec,
                                error_type=getattr(exc, "code", None),
                                deps=segment_deps,
                                mark_convergence=False,
                            )
                            agents_by_model.pop(model_spec, None)
                            available_models = [model for model in available_models if model != model_spec]
                            if not available_models:
                                convergence_detected = True
                                convergence_reason = "rate_limit"
                            continue
                        raise

                    result = run_result.output
                    if isinstance(result, EvolutionFailure):
                        if _is_rate_limit_error(result.error_message) or _is_rate_limit_error(result.error_type):
                            if result.partial_solution:
                                best_solution = result.partial_solution
                            _apply_rate_limit(
                                result.error_message,
                                model_spec=model_spec,
                                error_type=result.error_type,
                                deps=segment_deps,
                                mark_convergence=False,
                            )
                            agents_by_model.pop(model_spec, None)
                            available_models = [model for model in available_models if model != model_spec]
                            if not available_models:
                                convergence_detected = True
                                convergence_reason = "rate_limit"
                            continue
                        if _is_constraints_failure(result.error_message):
                            await _apply_fallback(
                                result,
                                deps=segment_deps,
                                model=model_spec,
                                reason="constraints",
                                event="evolution_constraints_fallback",
                                error_id="evolution_constraints",
                                update_partial=False,
                                require_solution=False,
                                error_type=result.error_type or "constraints",
                            )
                            break

                        if await _apply_fallback(result, deps=segment_deps, model=model_spec):
                            break
                        if result.partial_solution:
                            _set_partial_solution(result.partial_solution)
                        return await _emit_failure(result)

                    if best_fitness is None or result.best_fitness > best_fitness:
                        best_fitness = result.best_fitness
                        best_solution = result.best_solution
                    improvement_count = segment_deps.improvement_count
                    model_index += 1

                    if result.convergence_achieved and len(combined_history) >= min_generations:
                        convergence_detected = True
                        convergence_reason = result.convergence_reason
                        break

                    if len(combined_history) <= generation_offset:
                        baseline = result.best_fitness if result.best_fitness is not None else (best_fitness or 0.0)
                        for idx in range(segment_generations):
                            combined_history.append(
                                {
                                    "generation": generation_offset + idx + 1,
                                    "best_fitness": baseline,
                                    "mean_fitness": baseline,
                                    "worst_fitness": baseline,
                                    "population_size": population_size,
                                    "mutations": {"point": 0, "structural": 0, "hyperparameter": 0, "crossover": 0},
                                }
                            )

                    remaining_generations = max_rounds - len(combined_history)

                if not available_models and remaining_generations > 0:
                    convergence_detected = True
                    convergence_reason = "rate_limit"

        return (
            best_solution,
            best_fitness,
            combined_history,
            improvement_count,
            convergence_detected,
            convergence_reason,
            population_size,
            failure_counts,
        )

    async def _run_quick_evolution(self, state: MissionState, emitter: EventEmitter) -> SubmissionNode:
        max_generations = state.criteria.max_evolution_rounds
        population_size = max(2, min(evolver_settings.population_size, 2))
        baseline_score = state.prototype_score or 0.0
        mutations = {"point": 0, "structural": 0, "hyperparameter": 0, "crossover": 0}

        generation_history: list[GenerationMetrics] = []
        for generation in range(1, max_generations + 1):
            await emitter.emit_generation_start(generation=generation, population_size=population_size)
            metrics = GenerationMetrics(
                generation=generation,
                best_fitness=baseline_score,
                mean_fitness=baseline_score,
                worst_fitness=baseline_score,
                population_size=population_size,
                mutations=mutations,
            )
            generation_history.append(metrics)
            await emitter.emit_generation_complete(
                generation=generation,
                best_fitness=baseline_score,
                mean_fitness=baseline_score,
                worst_fitness=baseline_score,
                population_size=population_size,
                mutations=mutations,
            )

        if state.evolution_state is not None:
            state.evolution_state = state.evolution_state.model_copy(
                update={
                    "current_generation": max_generations,
                    "max_generations": max_generations,
                    "population_size": population_size,
                    "improvement_count": 0,
                    "min_improvements_required": state.criteria.min_improvements_required,
                    "best_solution": {"code": state.prototype_code or "", "fitness": baseline_score},
                    "generation_history": generation_history,
                    "convergence_detected": True,
                    "convergence_reason": "quick_test_mode",
                    "failure_summary": {},
                }
            )
        state.phases_completed.append("evolution")
        await emitter.emit_phase_complete(
            phase="evolution", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
        )
        return SubmissionNode()

    def _calculate_target_score(self, state: MissionState) -> float:
        """Calculate target score from research findings."""
        override = os.getenv("AGENT_K_TARGET_SCORE")
        if override:
            try:
                return float(override)
            except ValueError:
                logfire.warning("invalid_target_score_override", value=override)
        if state.research_findings and state.research_findings.leaderboard_analysis:
            return state.research_findings.leaderboard_analysis.target_score
        return 0.0

    def _elapsed_ms(self, start: datetime | None) -> int:
        return int((datetime.now(UTC) - start).total_seconds() * 1000) if start else 0
run async
run(ctx: GraphRunContext[MissionState, GraphContext]) -> SubmissionNode | End[MissionResult]

Execute evolution phase.

Source code in agent_k/mission/nodes.py
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> SubmissionNode | End[MissionResult]:
    """Execute evolution phase."""
    state = ctx.state
    emitter, _http_client, platform_adapter = _require_context(ctx.deps)
    competition = state.selected_competition
    if competition is None:
        return End(
            MissionResult(
                success=False,
                mission_id=state.mission_id,
                error_message="No competition selected for evolution phase",
                phases_completed=list(state.phases_completed),
            )
        )

    with logfire.span("graph.evolution", competition_id=state.competition_id):
        await emitter.emit_phase_start(
            phase="evolution",
            objectives=[
                "Initialize population from prototype",
                "Evolve solutions over generations",
                "Track fitness improvements",
                "Achieve target score or convergence",
            ],
        )

        state.current_phase = "evolution"
        state.phase_started_at = datetime.now(UTC)

        try:
            state.evolution_state = EvolutionState(
                max_generations=state.criteria.max_evolution_rounds,
                min_improvements_required=state.criteria.min_improvements_required,
            )

            if _quick_test_enabled(state.criteria):
                return await self._run_quick_evolution(state, emitter)

            outcome = await self._run_full_evolution(
                deps=ctx.deps,
                state=state,
                emitter=emitter,
                platform_adapter=platform_adapter,
                competition=competition,
            )
            if isinstance(outcome, End):
                return outcome

            (
                best_solution,
                best_fitness,
                history,
                improvement_count,
                convergence_detected,
                convergence_reason,
                population_size,
                failure_counts,
            ) = outcome

            resolved_solution = best_solution or state.prototype_code or ""
            resolved_fitness = best_fitness if best_fitness is not None else 0.0
            failure_summary = dict(failure_counts)
            if failure_summary:
                logfire.info(
                    "evolution_failure_summary",
                    summary=failure_summary,
                    total_failures=sum(failure_summary.values()),
                )

            state.evolution_state = state.evolution_state.model_copy(
                update={
                    "best_solution": {"code": resolved_solution, "fitness": resolved_fitness},
                    "convergence_detected": convergence_detected,
                    "convergence_reason": convergence_reason,
                    "current_generation": len(history),
                    "max_generations": state.criteria.max_evolution_rounds,
                    "population_size": population_size,
                    "improvement_count": improvement_count,
                    "min_improvements_required": state.criteria.min_improvements_required,
                    "generation_history": _convert_generation_history(history, population_size),
                    "failure_summary": failure_summary,
                }
            )

            state.phases_completed.append("evolution")

            await emitter.emit_phase_complete(
                phase="evolution", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
            )

            return SubmissionNode()

        except Exception as e:
            logfire.error("evolution_failed", error=str(e), traceback=traceback.format_exc())
            state.errors.append(
                {
                    "phase": "evolution",
                    "error": str(e),
                    "error_type": type(e).__name__,
                    "timestamp": datetime.now(UTC).isoformat(),
                }
            )
            await _emit_phase_failure(state=state, emitter=emitter, phase="evolution", error=e, context="evolution")
            # Even on failure, try to submit best solution if available
            if state.evolution_state and state.evolution_state.best_solution:
                return SubmissionNode()
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message=f"Evolution failed: {e}",
                    phases_completed=list(state.phases_completed),
                )
            )

SubmissionNode dataclass

Bases: BaseNode[MissionState, GraphContext, MissionResult]

Submission phase node.

Final submission of best solution.

Transitions:
    - Success → End(success)
    - Failure → End(failure)

@notice: | Submission phase node.

@dev: | See module for implementation details and extension points.

@pattern:
    name: graph-node
    rationale: "Encapsulates submission phase logic in the mission graph."
    violations: "Submission logic outside nodes causes transition drift."

@collaborators:
    required:
        - agent_k.core.protocols:PlatformAdapter
        - agent_k.ui.agui:EventEmitter
    optional:
        - agent_k.agents.evolver:EvolverAgent
    injection: GraphContext
    lifecycle: "Instantiated per graph run."

@concurrency:
    model: asyncio
    safe: false
    reason: "Mutates mission state during execution."

@invariants:
    - "timeout > 0"
Source code in agent_k/mission/nodes.py
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
@dataclass
class SubmissionNode(BaseNode[MissionState, GraphContext, MissionResult]):
    """Submission phase node.

        Final submission of best solution.

        Transitions:
            - Success → End(success)
            - Failure → End(failure)

    @notice: |
        Submission phase node.

    @dev: |
        See module for implementation details and extension points.

        @pattern:
            name: graph-node
            rationale: "Encapsulates submission phase logic in the mission graph."
            violations: "Submission logic outside nodes causes transition drift."

        @collaborators:
            required:
                - agent_k.core.protocols:PlatformAdapter
                - agent_k.ui.agui:EventEmitter
            optional:
                - agent_k.agents.evolver:EvolverAgent
            injection: GraphContext
            lifecycle: "Instantiated per graph run."

        @concurrency:
            model: asyncio
            safe: false
            reason: "Mutates mission state during execution."

        @invariants:
            - "timeout > 0"
    """

    timeout: int = SUBMISSION_TIMEOUT_SECONDS

    async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> End[MissionResult]:
        """Execute submission phase."""
        state = ctx.state
        emitter, _http_client, platform_adapter = _require_context(ctx.deps)
        competition = state.selected_competition
        if competition is None:
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    error_message="No competition selected for submission",
                    phases_completed=list(state.phases_completed),
                )
            )

        with logfire.span("graph.submission", competition_id=state.competition_id):
            await emitter.emit_phase_start(
                phase="submission",
                objectives=["Generate final predictions", "Submit to Kaggle", "Retrieve final score and rank"],
            )

            state.current_phase = "submission"
            state.phase_started_at = datetime.now(UTC)

            try:
                min_improvements_required = (
                    state.evolution_state.min_improvements_required if state.evolution_state else 0
                )
                improvement_count = state.evolution_state.improvement_count if state.evolution_state else 0
                if min_improvements_required > 0 and improvement_count < min_improvements_required:
                    error_message = (
                        f"Minimum improvements not reached ({improvement_count}/{min_improvements_required})"
                    )
                    logfire.warning(
                        "submission_blocked_min_improvements",
                        improvement_count=improvement_count,
                        min_improvements_required=min_improvements_required,
                    )
                    state.errors.append(
                        {
                            "phase": "submission",
                            "error": error_message,
                            "error_type": "min_improvements",
                            "timestamp": datetime.now(UTC).isoformat(),
                        }
                    )
                    await emitter.emit_phase_error(phase="submission", error=error_message, recoverable=True)
                    await emitter.emit_phase_complete(
                        phase="submission", success=False, duration_ms=self._elapsed_ms(state.phase_started_at)
                    )
                    _cleanup_session_data(state.mission_id)
                    return End(
                        MissionResult(
                            success=False,
                            mission_id=state.mission_id,
                            competition_id=state.competition_id,
                            error_message=error_message,
                            phases_completed=list(state.phases_completed),
                        )
                    )

                # Get best solution
                best_code = ""
                if state.evolution_state and state.evolution_state.best_solution:
                    best_code = state.evolution_state.best_solution.get("code", "")
                elif state.prototype_code:
                    best_code = state.prototype_code

                if not best_code:
                    _cleanup_session_data(state.mission_id)
                    return End(
                        MissionResult(
                            success=False,
                            mission_id=state.mission_id,
                            error_message="No solution available for submission",
                            phases_completed=list(state.phases_completed),
                        )
                    )

                with tempfile.TemporaryDirectory() as work_dir:
                    work_path = Path(work_dir)
                    competition_id = state.competition_id or competition.id
                    state.competition_id = competition_id
                    train_path, test_path, sample_path = await _prepare_session_data(
                        platform_adapter, state.mission_id, competition_id
                    )
                    staged = stage_competition_data(
                        train_path, test_path, sample_path, work_path, competition_id=competition_id
                    )
                    schema = infer_competition_schema(staged["train"], staged["test"], staged["sample"])
                    profile = build_problem_profile(competition, schema)
                    technique_policy = build_technique_policy(profile, state.criteria)
                    best_code, notes = apply_solution_policy(best_code, technique_policy)
                    if notes:
                        logfire.warning("submission_policy_injection_failed", notes=notes)

                    submission_path = work_path / "submission.csv"
                    execution = await execute_solution(
                        best_code,
                        work_path,
                        timeout_seconds=self.timeout,
                        use_builtin_code_execution=True,
                        model_spec=evolver_settings.model,
                    )

                    if not submission_path.exists() or execution.returncode != 0 or execution.timed_out:
                        fallback_code = state.prototype_code
                        if fallback_code and fallback_code != best_code:
                            fallback_code, notes = apply_solution_policy(fallback_code, technique_policy)
                            if notes:
                                logfire.warning("submission_policy_injection_failed_fallback", notes=notes)
                            execution = await execute_solution(
                                fallback_code,
                                work_path,
                                timeout_seconds=self.timeout,
                                use_builtin_code_execution=True,
                                model_spec=evolver_settings.model,
                            )

                        if not submission_path.exists() or execution.returncode != 0 or execution.timed_out:
                            _write_fallback_submission(
                                train_path=staged["train"],
                                test_path=staged["test"],
                                sample_path=staged["sample"],
                                metric=competition.metric,
                                output_path=submission_path,
                            )

                    if not submission_path.exists():
                        _cleanup_session_data(state.mission_id)
                        return End(
                            MissionResult(
                                success=False,
                                mission_id=state.mission_id,
                                error_message="Failed to generate submission file",
                                phases_completed=list(state.phases_completed),
                            )
                        )

                    # Submit via platform adapter
                    submission = await platform_adapter.submit(
                        competition_id, str(submission_path), message=f"AGENT-K mission {state.mission_id}"
                    )

                state.final_submission_id = submission.id

                # Wait for score
                for _ in range(10):  # Poll for score
                    await asyncio.sleep(5)
                    status = await platform_adapter.get_submission_status(competition_id, submission.id)
                    if status.public_score is not None:
                        state.final_score = status.public_score
                        break

                if state.final_score is None:
                    best_fitness = None
                    if state.evolution_state and state.evolution_state.best_solution:
                        best_fitness = state.evolution_state.best_solution.get("fitness")
                    fallback_score = _score_from_fitness(best_fitness, competition.metric_direction)
                    if fallback_score is not None:
                        state.final_score = fallback_score
                        logfire.info(
                            "submission_score_fallback",
                            competition_id=competition_id,
                            source="fitness",
                            score=fallback_score,
                        )
                    elif state.prototype_score is not None:
                        state.final_score = state.prototype_score
                        logfire.info(
                            "submission_score_fallback",
                            competition_id=competition_id,
                            source="prototype",
                            score=state.prototype_score,
                        )

                # Get rank
                leaderboard = await platform_adapter.get_leaderboard(competition_id, limit=10000)
                for entry in leaderboard:
                    if entry.score == state.final_score:
                        state.final_rank = entry.rank
                        break

                best_fitness = None
                if state.evolution_state and state.evolution_state.best_solution:
                    best_fitness = state.evolution_state.best_solution.get("fitness")
                tracker = create_experiment_tracker()
                metadata = extract_solution_metadata(best_code)
                tracker.record_experiment(
                    ExperimentRecord(
                        competition_id=competition_id,
                        phase="submission",
                        model_name=metadata.model_name,
                        model_family=metadata.model_family,
                        hyperparameters=metadata.hyperparameters,
                        feature_set=metadata.feature_set,
                        feature_engineering=metadata.feature_engineering,
                        target_transform=metadata.target_transform,
                        metrics={
                            "fitness": best_fitness,
                            "public_score": state.final_score,
                            "rank": state.final_rank,
                            "total_teams": len(leaderboard),
                        },
                        public_score=state.final_score,
                        submission_id=submission.id,
                        rank=state.final_rank,
                        code_signature=hashlib.sha256(best_code.encode()).hexdigest()[:12],
                        dataset_fingerprint=competition_id,
                    )
                )

                state.phases_completed.append("submission")

                # Emit submission result
                await emitter.emit_submission_result(
                    submission_id=submission.id,
                    generation=(len(state.evolution_state.generation_history) if state.evolution_state else 0),
                    cv_score=(
                        state.evolution_state.best_solution.get("fitness", 0)
                        if state.evolution_state and state.evolution_state.best_solution
                        else 0
                    ),
                    public_score=state.final_score,
                    rank=state.final_rank,
                    total_teams=len(leaderboard),
                )

                await emitter.emit_phase_complete(
                    phase="submission", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
                )

                _cleanup_session_data(state.mission_id)

                # Calculate total duration
                total_duration_ms = int((datetime.now(UTC) - state.started_at).total_seconds() * 1000)

                return End(
                    MissionResult(
                        success=True,
                        mission_id=state.mission_id,
                        competition_id=state.competition_id,
                        final_rank=state.final_rank,
                        final_score=state.final_score,
                        total_submissions=(
                            len(state.evolution_state.leaderboard_submissions) if state.evolution_state else 1
                        ),
                        evolution_generations=(
                            len(state.evolution_state.generation_history) if state.evolution_state else 0
                        ),
                        duration_ms=total_duration_ms,
                        phases_completed=list(state.phases_completed),
                    )
                )

            except Exception as e:
                logfire.error("submission_failed", error=str(e))
                state.errors.append(
                    {"phase": "submission", "error": str(e), "timestamp": datetime.now(UTC).isoformat()}
                )
                _cleanup_session_data(state.mission_id)
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        competition_id=state.competition_id,
                        error_message=f"Submission failed: {e}",
                        phases_completed=list(state.phases_completed),
                    )
                )

    def _elapsed_ms(self, start: datetime | None) -> int:
        return int((datetime.now(UTC) - start).total_seconds() * 1000) if start else 0
run async
run(ctx: GraphRunContext[MissionState, GraphContext]) -> End[MissionResult]

Execute submission phase.

Source code in agent_k/mission/nodes.py
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
async def run(self, ctx: GraphRunContext[MissionState, GraphContext]) -> End[MissionResult]:
    """Execute submission phase."""
    state = ctx.state
    emitter, _http_client, platform_adapter = _require_context(ctx.deps)
    competition = state.selected_competition
    if competition is None:
        return End(
            MissionResult(
                success=False,
                mission_id=state.mission_id,
                error_message="No competition selected for submission",
                phases_completed=list(state.phases_completed),
            )
        )

    with logfire.span("graph.submission", competition_id=state.competition_id):
        await emitter.emit_phase_start(
            phase="submission",
            objectives=["Generate final predictions", "Submit to Kaggle", "Retrieve final score and rank"],
        )

        state.current_phase = "submission"
        state.phase_started_at = datetime.now(UTC)

        try:
            min_improvements_required = (
                state.evolution_state.min_improvements_required if state.evolution_state else 0
            )
            improvement_count = state.evolution_state.improvement_count if state.evolution_state else 0
            if min_improvements_required > 0 and improvement_count < min_improvements_required:
                error_message = (
                    f"Minimum improvements not reached ({improvement_count}/{min_improvements_required})"
                )
                logfire.warning(
                    "submission_blocked_min_improvements",
                    improvement_count=improvement_count,
                    min_improvements_required=min_improvements_required,
                )
                state.errors.append(
                    {
                        "phase": "submission",
                        "error": error_message,
                        "error_type": "min_improvements",
                        "timestamp": datetime.now(UTC).isoformat(),
                    }
                )
                await emitter.emit_phase_error(phase="submission", error=error_message, recoverable=True)
                await emitter.emit_phase_complete(
                    phase="submission", success=False, duration_ms=self._elapsed_ms(state.phase_started_at)
                )
                _cleanup_session_data(state.mission_id)
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        competition_id=state.competition_id,
                        error_message=error_message,
                        phases_completed=list(state.phases_completed),
                    )
                )

            # Get best solution
            best_code = ""
            if state.evolution_state and state.evolution_state.best_solution:
                best_code = state.evolution_state.best_solution.get("code", "")
            elif state.prototype_code:
                best_code = state.prototype_code

            if not best_code:
                _cleanup_session_data(state.mission_id)
                return End(
                    MissionResult(
                        success=False,
                        mission_id=state.mission_id,
                        error_message="No solution available for submission",
                        phases_completed=list(state.phases_completed),
                    )
                )

            with tempfile.TemporaryDirectory() as work_dir:
                work_path = Path(work_dir)
                competition_id = state.competition_id or competition.id
                state.competition_id = competition_id
                train_path, test_path, sample_path = await _prepare_session_data(
                    platform_adapter, state.mission_id, competition_id
                )
                staged = stage_competition_data(
                    train_path, test_path, sample_path, work_path, competition_id=competition_id
                )
                schema = infer_competition_schema(staged["train"], staged["test"], staged["sample"])
                profile = build_problem_profile(competition, schema)
                technique_policy = build_technique_policy(profile, state.criteria)
                best_code, notes = apply_solution_policy(best_code, technique_policy)
                if notes:
                    logfire.warning("submission_policy_injection_failed", notes=notes)

                submission_path = work_path / "submission.csv"
                execution = await execute_solution(
                    best_code,
                    work_path,
                    timeout_seconds=self.timeout,
                    use_builtin_code_execution=True,
                    model_spec=evolver_settings.model,
                )

                if not submission_path.exists() or execution.returncode != 0 or execution.timed_out:
                    fallback_code = state.prototype_code
                    if fallback_code and fallback_code != best_code:
                        fallback_code, notes = apply_solution_policy(fallback_code, technique_policy)
                        if notes:
                            logfire.warning("submission_policy_injection_failed_fallback", notes=notes)
                        execution = await execute_solution(
                            fallback_code,
                            work_path,
                            timeout_seconds=self.timeout,
                            use_builtin_code_execution=True,
                            model_spec=evolver_settings.model,
                        )

                    if not submission_path.exists() or execution.returncode != 0 or execution.timed_out:
                        _write_fallback_submission(
                            train_path=staged["train"],
                            test_path=staged["test"],
                            sample_path=staged["sample"],
                            metric=competition.metric,
                            output_path=submission_path,
                        )

                if not submission_path.exists():
                    _cleanup_session_data(state.mission_id)
                    return End(
                        MissionResult(
                            success=False,
                            mission_id=state.mission_id,
                            error_message="Failed to generate submission file",
                            phases_completed=list(state.phases_completed),
                        )
                    )

                # Submit via platform adapter
                submission = await platform_adapter.submit(
                    competition_id, str(submission_path), message=f"AGENT-K mission {state.mission_id}"
                )

            state.final_submission_id = submission.id

            # Wait for score
            for _ in range(10):  # Poll for score
                await asyncio.sleep(5)
                status = await platform_adapter.get_submission_status(competition_id, submission.id)
                if status.public_score is not None:
                    state.final_score = status.public_score
                    break

            if state.final_score is None:
                best_fitness = None
                if state.evolution_state and state.evolution_state.best_solution:
                    best_fitness = state.evolution_state.best_solution.get("fitness")
                fallback_score = _score_from_fitness(best_fitness, competition.metric_direction)
                if fallback_score is not None:
                    state.final_score = fallback_score
                    logfire.info(
                        "submission_score_fallback",
                        competition_id=competition_id,
                        source="fitness",
                        score=fallback_score,
                    )
                elif state.prototype_score is not None:
                    state.final_score = state.prototype_score
                    logfire.info(
                        "submission_score_fallback",
                        competition_id=competition_id,
                        source="prototype",
                        score=state.prototype_score,
                    )

            # Get rank
            leaderboard = await platform_adapter.get_leaderboard(competition_id, limit=10000)
            for entry in leaderboard:
                if entry.score == state.final_score:
                    state.final_rank = entry.rank
                    break

            best_fitness = None
            if state.evolution_state and state.evolution_state.best_solution:
                best_fitness = state.evolution_state.best_solution.get("fitness")
            tracker = create_experiment_tracker()
            metadata = extract_solution_metadata(best_code)
            tracker.record_experiment(
                ExperimentRecord(
                    competition_id=competition_id,
                    phase="submission",
                    model_name=metadata.model_name,
                    model_family=metadata.model_family,
                    hyperparameters=metadata.hyperparameters,
                    feature_set=metadata.feature_set,
                    feature_engineering=metadata.feature_engineering,
                    target_transform=metadata.target_transform,
                    metrics={
                        "fitness": best_fitness,
                        "public_score": state.final_score,
                        "rank": state.final_rank,
                        "total_teams": len(leaderboard),
                    },
                    public_score=state.final_score,
                    submission_id=submission.id,
                    rank=state.final_rank,
                    code_signature=hashlib.sha256(best_code.encode()).hexdigest()[:12],
                    dataset_fingerprint=competition_id,
                )
            )

            state.phases_completed.append("submission")

            # Emit submission result
            await emitter.emit_submission_result(
                submission_id=submission.id,
                generation=(len(state.evolution_state.generation_history) if state.evolution_state else 0),
                cv_score=(
                    state.evolution_state.best_solution.get("fitness", 0)
                    if state.evolution_state and state.evolution_state.best_solution
                    else 0
                ),
                public_score=state.final_score,
                rank=state.final_rank,
                total_teams=len(leaderboard),
            )

            await emitter.emit_phase_complete(
                phase="submission", success=True, duration_ms=self._elapsed_ms(state.phase_started_at)
            )

            _cleanup_session_data(state.mission_id)

            # Calculate total duration
            total_duration_ms = int((datetime.now(UTC) - state.started_at).total_seconds() * 1000)

            return End(
                MissionResult(
                    success=True,
                    mission_id=state.mission_id,
                    competition_id=state.competition_id,
                    final_rank=state.final_rank,
                    final_score=state.final_score,
                    total_submissions=(
                        len(state.evolution_state.leaderboard_submissions) if state.evolution_state else 1
                    ),
                    evolution_generations=(
                        len(state.evolution_state.generation_history) if state.evolution_state else 0
                    ),
                    duration_ms=total_duration_ms,
                    phases_completed=list(state.phases_completed),
                )
            )

        except Exception as e:
            logfire.error("submission_failed", error=str(e))
            state.errors.append(
                {"phase": "submission", "error": str(e), "timestamp": datetime.now(UTC).isoformat()}
            )
            _cleanup_session_data(state.mission_id)
            return End(
                MissionResult(
                    success=False,
                    mission_id=state.mission_id,
                    competition_id=state.competition_id,
                    error_message=f"Submission failed: {e}",
                    phases_completed=list(state.phases_completed),
                )
            )